DECAY WITHOUT A RATE

ONYX GAUTAM

Notation. Decompose a function $f: \mathbf{R}_t \times S^2 \to \mathbf{R}$ as a sum of L^2 -orthogonal spherical modes $f = \sum_L f_L$.

If the spherical modes decay with a uniform rate and are summable uniformly in time and over the sphere, we can deduce decay without a rate for f.

Lemma 1. Suppose that:

- (i) $||f_L||_{L^{\infty}(S^2)}(t) \leq C_L \epsilon(t)$ for constants $C_L > 0$ and $\epsilon(t) \to 0$,
- (ii) $||f_L||_{L^{\infty}(\mathbf{R}\times S^2)} \in \ell_L^1$.

Then f decays in time:

$$\lim_{t \to \infty} ||f_L||_{L^{\infty}(S^2)}(t) = 0. \tag{1}$$

Proof. Since $\epsilon(t) \to 0$, we can construct L(t) (e.g. piecewise constant) so that $\epsilon(t) \sum_{L \le L(t)} C_L \to 0$ and $L(t) \to \infty$. Now

$$||f||_{L^{\infty}(S^2)}(t) \le \sum_{L} ||f_L||_{L^{\infty}(S^2)}(t) \le \epsilon(t) \sum_{L \le L(t)} C_L + \sum_{L \ge L(t)} ||f_L||_{L^{\infty}(\mathbf{R} \times S^2)}.$$
(2)

By construction of L(t) and assumption (ii), the right side vanishes as $t \to \infty$.

Even without uniform estimates for f_L , one can still deduce decay without a rate for f, given additional control of derivatives as well as energy boundedness.

Lemma 2. Write $E_k[f](t)$ for $E_k[f(t,\cdot)] := \|\Omega^{\leq k} f(t,\cdot)\|_{L^2(S^2)}$. Suppose that:

- (i) each spherical mode decays together with its first two angular derivatives, i.e. $\lim_{t\to\infty} \Omega^k f_L(t,\omega) = 0$ for each $\omega \in S^2$ and $k \leq 2$,
- (ii) energy boundedness holds in the sense that $E_k[f_L](t) \lesssim E_k[f_L](0)$ and $E_k[f](t) \lesssim E_k[f](0)$ for $k \leq 4$, where the implied constants are independent of t and L,
- (iii) the initial data is bounded, in the sense that $E_4[f](0) < \infty$.

Then f decays in time:

$$\lim_{t \to \infty} ||f||_{L^{\infty}(S^2)}(t) = 0. \tag{3}$$

Proof. Sobolev embedding on the sphere and L^2 -orthogonality of the spherical modes imply

$$||f||_{L^{\infty}(S^2)}^2(t) \lesssim E_2[f](t) = E_2[\sum_L f_L](t) = \sum_L E_2[f_L](t),$$

where we used assumptions (ii) and (iii) to infer that $\Omega^{\leq 2}f(t,\cdot) \in L^2(S^2)$ and justify the interchange of integral and limit in the final equality. By the energy boundedness assumption (ii), L^2 -orthogonality, and the boundedness of initial data assumption (iii), the summand on the right is dominated uniformly in time by the ℓ_L^1 quantity $E_2[f_L](0)$. The dominated convergence theorem therefore allows the interchange of a limit in time and the sum in L:

$$\lim_{t\to\infty} ||f||_{L^{\infty}(S^2)}^2(t) \lesssim \sum_L \lim_{t\to\infty} E_2[f_L](t).$$

Finally, assumptions (ii) and (iii) imply that $\Omega^{\leq 2}f(t,\omega)$ is dominated uniformly in time by $E_4[f](0)$ (which is in $L^2(S^2)$), which justifies the interchange of the limit in time and the integral over the sphere implicit in E_2 . Using assumption (i) now completes the proof.