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General relativity

A spacetime is a 4-manifold M3+1 with a Lorentzian metric g
solving the Einstein equations:

Ric(g) — %R(g)g =T,

where T is the energy momentum tensor of matter (scalar field,
electromagnetism, perfect fluid,...)
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Ric(g) — ;R(g)g =T,
where T is the energy momentum tensor of matter (scalar field,
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Example

Minkowski space: M =R3*f! T =0 and

t7x7y7z !

g = —dt? + dx® + dy® + dz°



Causal character of tangent vectors
Wesay v € T,M is

e spacelike if g(v,v) >0
o timelike if g(v,v) <0
o nullif g(v,v)=0

Curves with timelike or null tangent vector define causality.



Initial value formulation of Einstein’s equations

i 1
Ric(g) - 5R(g)g =T,
In the right coordinates, the Einstein equations are quasilinear
wave equations for the metric g and the matter fields ¢:

g°90,058. + N(g,0g) = terms involving ¢

equations for ¢
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Initial value formulation of Einstein’s equations

Thm (Choquet-Bruhat '52, Choquet-Bruhat—Geroch '69)

Any Cauchy data set (X, z, k, ) for the Einstein equations
coupled to a suitable matter model induces a unique maximal
“globally hyperbolic” development

(X8, k, @) = (M, g,p)

Given the state of the universe at one instant of time (the
gravitational field and matter fields), Einstein's equations uniquely
determine the evolution for all later times.

Example

Minkowski space is the unique solution arising from the data
(R3,5,0,0). It is geodesically complete, hence inextendible.



What is a black hole?

A black hole is a region of spacetime that “cannot be seen” by “far
away observers.”

All light cones in the black hole region “point inwards.”

The past boundary H of the black hole region is called the event
horizon.



The Reissner—Nordstrom metric

This metric describes a spherically symmetric charged black hole
with mass M and charge e:

2M € 2M e\ -1
EMe = —(1 - —+ —2) dt® + <1 = =——qF —2) dr® + r2g52,
r 7 r 7

It has an event horizon H at r. = M +\/M? — e? and a Cauchy
horizon CH at r = M — v/ M? — e2.

We work entirely in the subextremal case |e| < M.



The Reissner—Nordstrom metric

This metric describes a spherically symmetric charged black hole
with mass M and charge e:

oM e 2M  e?\-1
gM,e:_<1_T+%)dt +<1_7+ ) dr2+r2g52,

It has an event horizon H at r. = M +\/M? — e? and a Cauchy
horizon CH at r = M — v/ M? — e2.

We work entirely in the subextremal case |e| < M.

Important fact

The Cauchy horizon of Reissner—Nordstrom is smooth!
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The matter model

We study the Einstein-Maxwell-(uncharged) scalar field system:
Ric(g) — 1gR(g) = 2(T¢H 4 Tem),
T = 0apdpp — 18as0" 00y,
TS = F, Fay — LgagFP Fuu,
g =0, dF =0, divgF = 0.
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is constant and equal to the black hole mass M.



The Hawking mass controls the curvature

On Reissner—Nordstrom, the (renormalized) Hawking mass

r 40,ro,r e?
~ (4 ) <
“ 2( Tt )ty

is constant and equal to the black hole mass M.

Important fact
We have (when r > ry > 0)

Riem®? " Riem 5,5 > @ + O(1)

10



A global existence theorem

Theorem (Dafermos ’05, '14; Kommemi '13)
Suitable Cauchy data for the spherically symmetric

Einstein—Maxwell-scalar field system leads to a global solution
containing a black hole region.
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Instability of the Cauchy horizon

Linear effects (on Reissner—Nordstrom):

e Infinite blueshift effect at CH [Penrose '68, Simpson—Penrose '73,
McNamara '78, Chandrasekhar—Hartle '82]
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Instability of the Cauchy ho

Linear effects (on Reissner—Nordstrom):

e Infinite blueshift effect at CH [Penrose '68, Simpson—Penrose '73,
McNamara '78, Chandrasekhar—Hartle '82]

e Linear waves are in L°°\ HL_ near CH [Franzen '16, Luk-Oh '17]
Nonlinear effects:

e Einstein—null dust with one dust [Hiscock '81]

e mass inflation with two dusts: w|cy = 00 [Poisson-Israel '89,
'90; Ori '91]
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Results on strong cosmic censorship

Solutions are generically:
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Results on strong cosmic censorship

Solutions are generically:

e inextendible in C° whene =0 [Christodoulou '90s, Sbierski '18]

o extendible in C° when e # 0 [Dafermos '05, Dafermos—Rodnianski
'05] (c.f. [Dafermos-Luk '17] outside of symmetry)

e inextendible in C? [Luk-Oh '19] and in Cl?)cl for small data
[Sbierski '20]
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Decay rates in exterior ~~ (in)stability results in the interior.
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Best known results in the exterior

We know the pointwise upper bounds [Dafermos—Rodnianski '05]

’(PHH + ‘av(PHH ge,gp V73+67 (1)

and the generic L? lower bound [Luk-Oh '19]

/ vIT(d,p)? dv = oo for all € > 0. (2)
H

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos—Rodnianski '05]

’(PHH + ‘(‘)V(PHH ge,gp V73+67 (1)

and the generic L? lower bound [Luk-Oh '19]

/ vITe(0,¢)? dv = oo for all € > 0. (2)
H

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos—Rodnianski '05]

’99"7'[ + ‘6%/)“7'[ Se,go V73+67 (1)

and the generic L? lower bound [Luk-Oh '19]

/ vIT(d,p)? dv = oo for all € > 0. (2)
H

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos '05]:

Oveplla(v) Z vt

or (2) and L? upper bounds [Luk-Oh-Shlapentokh-Rothman '22]:

/ (VSO) dv<oo/ dv<ooforsomek>2
H

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos—Rodnianski '05]

, (1)

and the generic L? lower bound [Luk-Oh '19]

/ vIT(d,p)? dv = oo for all € > 0. (2)
H

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos '05]:
Oveplla(v) Z vt
or (2) and L? upper bounds [Luk-Oh-Shlapentokh-Rothman '22]:

,/ v8(9Kp)? dv < oo for some k > 2.
H

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos—Rodnianski '05]

’99"7'[ + ‘av(pHH Se,go V73+67 (1)

and the generic L? lower bound [Luk-Oh '19]

/ vIT(d,p)? dv = oo for all € > 0. (2)
H

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos '05]:
Oveplla(v) Z vt
or (2) and L? upper bounds [Luk-Oh-Shlapentokh-Rothman '22]:

/ vA(0,9)? dv < oo,
H

15



The new result

Mass inflation generically holds if [Dafermos—Rodnianski '05,
Luk—Oh-Shlapentokh-Rothman '22]:

/ v8(9%¢p)? dv < oo for some k > 2.
H
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The new result

Mass inflation generically holds if [Dafermos—Rodnianski '05,
Luk—Oh-Shlapentokh-Rothman '22]:

/ v8(9%¢p)? dv < oo for some k > 2.
H

Theorem (G. ’24)

All solutions satisfy

10K0) |3 Se vkt for 0 < k < 4.

Corollary
Mass inflation holds for generic solutions.
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Price’s law

Price’s law
At late times, linear waves on subextremal black hole spacetimes
behave like ¢t 3.

[Price '72; Dafermos-Rodnianski '05; Tataru '13; Donninger-Schlag-Soffer '12;
Metcalfe-Tataru-Tohaneanu '12; Angelopoulos-Aretakis-Gajic '18, '21; Hintz

'20; and many others...]
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Price’s law in a nonlinear and spherically symmetric setting

Theorem (Luk—Oh 19, Luk—Oh 24, G. '24)
There are constants C, # 0, a functional £[y|, and a small
constant 6 > 0 such that

|00 — CeLlolv 3Kl Sv3F 0 foro < k < 2.

The quantity £[p] is non-zero for generic solutions.
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Price’s law in a nonlinear and spherically symmetric setting

Theorem (Luk—Oh 19, Luk—Oh 24, G. '24)
There are constants C, # 0, a functional £[y|, and a small
constant 6 > 0 such that
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The quantity £[p] is non-zero for generic solutions.

Mass inflation holds if [Dafermos '05]:
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Corollary

Mass inflation holds for generic solutions.
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An application

Theorem (Van de Moortel '25)

There exist (two-ended and spherically symmetric) asymptotically
flat black holes whose interior contains both a spacelike and a
null singularity.

19



An outline of the proof




The scaling vector field

e On Minkowski, Sy, = ud, + v, satisfies [m, Sm] = 20m
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Key ingredients of the proof

e Redshift effect on a subextremal black hole
[Dafermos—Rodnianski '05]

e Energy decay (and pointwise decay) from rP-weighted energy
estimates [Dafermos—Rodnianski '09]

e Reductive structure in the error terms arising from

commutation

e Hierarchy of weak and strong decay estimates for the

geometry

21



Reductive structure in the errors arising from commutation

e+ [ [ (00 < Ellr)+ [ wowp+- (w>0)

We use three vector field commutators: U, V, and S.

e Energy estimate for ¢ closes on its own
e Energy estimate for Uy sees errors involving ¢
e Energy estimate for V¢ sees errors involving ¢ and Uy

e Energy estimate for S sees errors involving ¢, Up, and Vo
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Reductive structure in the errors arising from commutation

e+ [ [ (00 < Ellr)+ [ wowp+- (w>0)

We use three vector field commutators: U, V, and S.

e Energy estimate for ¢ closes on its own

e Energy estimate for Uy sees errors involving ¢

e Energy estimate for V¢ sees errors involving ¢ and Uy

e Energy estimate for S sees errors involving ¢, Up, and Vo

Takeaway
Order the commutators U < V < S|
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Hierarchy in the estimates for the geometry

e After commuting with I', derive (strong) time decay for Ig.

e Commuting with S requires (weak) boundedness and r-decay
of Sg!

e Write |Sg| < u|Ug| + v|Vg| and use time decay for Ug and
Vyg.
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The gauge

The ingoing coordinate u is normalized at null infinity:
(—8,_,[‘)‘1 = 1l,
The outgoing coordinate v is normalized on a curve of constant r:

avr|{r:rH} =1.
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The three vector field commutators

e 0= (u,v) (used globally)
e 0= (u,r) (used near infinity)
e 0= (v, r) (used near the horizon)
Uz — 80 V= xer(N0, + (1 — xr<r(r))D
T (_8ur) us T XI’SR =V XI’SR r

S = xr<r(r)vd, + (1 — x,<r(r))(udy + rd;).

25



Reductive structure: the details

1 _
U= mauv V = XrgR(f)Qv + (1 - XrgR(r))ara

S = xr<r(r)vo, + (1 - X,gR(r))(ugu + r0,).

Ewlr)+ [ [ 7400 S EWl(m)+ [ [ wouBue (w>0)

The global redshift vector field U
OUp = —kUUp + O(r=2)d¢p, where k > 0
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Reductive structure: the details
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Reductive structure: the details

U= (_;)a V = xr<r(r)d, + (1 = Xe<r(1),,
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Reductive structure: the details

U= (—81ur)a”’ V= xr<r(r)d, + (1 = xr<r(r))0r,

S = Xr<r(r)vo, + (1 - x,<R(r))(u5 + r0,).
E[](2) // (0v)? < E[W](m1) // wUphp+- - (w > 0).

The scaling vector field S

e ISy = O(r*HE)gfcp + l.o.t.
e Rewrite gfgo =r19,(rVy) + lot.
o [1Sp = + l.o.t.

EplVel(72) + S Ep[Vel(m),  (p=3e).
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Summary of the proof

e Construct a scaling vector field commutator S with S|z ~ vd,

e Introduce vector field commutators U and V so that U, V,
and S exhibit a reductive structure when U < V < S

e To close the energy estimate for [y, use the reductive
structure and (weak) boundedness and r-decay for I'g
obtained using the (strong) time decay for ['g with " < T

e Obtain (strong) time decay for ¢
e Deduce v17¢ decay for Iy using standard techniques

e Take I' = S for k large and use known results to obtain mass
inflation
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