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General relativity

A spacetime is a 4-manifold M3+1 with a Lorentzian metric g

solving the Einstein equations:

Ric(g)− 1

2
R(g)g = T ,

where T is the energy momentum tensor of matter (scalar field,

electromagnetism, perfect fluid,...)

Example

Minkowski space: M = R3+1
t,x ,y ,z , T = 0 and

g = −dt2 + dx2 + dy2 + dz2
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Causality

Causal character of tangent vectors

We say v ∈ TpM is

• spacelike if g(v , v) > 0

• timelike if g(v , v) < 0

• null if g(v , v) = 0

Curves with timelike or null tangent vector define causality.
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Initial value formulation of Einstein’s equations

Ric(g)− 1

2
R(g)g = T ,

In the right coordinates, the Einstein equations are quasilinear

wave equations for the metric g and the matter fields φ:gαβ∂α∂βgµν +N (g , ∂g) = terms involving φ

equations for φ

Thm (Choquet-Bruhat ’52, Choquet-Bruhat–Geroch ’69)

Any Cauchy data set (Σ, ḡ , k̄, φ̄) for the Einstein equations

coupled to a suitable matter model induces a unique maximal

“globally hyperbolic” development

(Σ, ḡ , k̄, φ̄) ↪−→ (M, g , φ)
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Initial value formulation of Einstein’s equations

Thm (Choquet-Bruhat ’52, Choquet-Bruhat–Geroch ’69)

Any Cauchy data set (Σ, ḡ , k̄, φ̄) for the Einstein equations

coupled to a suitable matter model induces a unique maximal

“globally hyperbolic” development

(Σ, ḡ , k̄, φ̄) ↪−→ (M, g , φ)

Given the state of the universe at one instant of time (the

gravitational field and matter fields), Einstein’s equations uniquely

determine the evolution for all later times.

Example

Minkowski space is the unique solution arising from the data

(R3, δ, 0, 0). It is geodesically complete, hence inextendible.
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What is a black hole?

A black hole is a region of spacetime that “cannot be seen” by “far

away observers.”

All light cones in the black hole region “point inwards.”

The past boundary H of the black hole region is called the event

horizon.
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The Reissner–Nordström metric

This metric describes a spherically symmetric charged black hole

with mass M and charge e:

gM,e = −
(
1− 2M

r
+

e2

r2

)
dt2 +

(
1− 2M

r
+

e2

r2

)−1
dr2 + r2gS2 ,

It has an event horizon H at r+ = M +
√
M2 − e2 and a Cauchy

horizon CH at r = M −
√
M2 − e2.

We work entirely in the subextremal case |e| < M.

Important fact

The Cauchy horizon of Reissner–Nordström is smooth!
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Strong cosmic censorship

Conjecture

The maximal development of a generic asymptotically flat

solution to the Einstein equations is inextendible as a suitably

regular Lorentzian manifold.
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The matter model

We study the Einstein–Maxwell–(uncharged) scalar field system:
Ric(g)− 1

2gR(g) = 2(T (sf) + T (em)),

T
(sf)
αβ = ∂αφ∂βφ− 1

2gαβ∂
µφ∂µφ,

T
(em)
αβ = Fα

νFβν − 1
4gαβF

µνFµν ,

□gφ = 0, dF = 0, divgF = 0.

We work entirely in spherical symmetry, where

g = −Ω2 du dv + r2gS2 , F =
Ω2e

2r2
du ∧ dv (e ∈ R).

On Reissner–Nordström, the (renormalized) Hawking mass

ϖ =
r

2

(
1 +

4∂ur∂v r

Ω2

)
+

e2

2r

is constant and equal to the black hole mass M.
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The Hawking mass controls the curvature

On Reissner–Nordström, the (renormalized) Hawking mass

ϖ =
r

2

(
1 +

4∂ur∂v r

Ω2

)
+

e2

2r

is constant and equal to the black hole mass M.

Important fact

We have (when r ≥ r0 > 0)

RiemαβγδRiemαβγδ ≳ ϖ + O(1)
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A global existence theorem

Theorem (Dafermos ’05, ’14; Kommemi ’13)

Suitable Cauchy data for the spherically symmetric

Einstein–Maxwell–scalar field system leads to a global solution

containing a black hole region.
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Instability of the Cauchy horizon

Linear effects (on Reissner–Nordström):

• Infinite blueshift effect at CH [Penrose ’68, Simpson–Penrose ’73,

McNamara ’78, Chandrasekhar–Hartle ’82]

• Linear waves are in L∞ \ H1
loc near CH [Franzen ’16, Luk–Oh ’17]

Nonlinear effects:

• Einstein–null dust with one dust [Hiscock ’81]

• mass inflation with two dusts: ϖ|CH ≡ ∞ [Poisson–Israel ’89,

’90; Ori ’91]
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Results on strong cosmic censorship

Solutions are generically:

• inextendible in C 0 when e = 0 [Christodoulou ’90s, Sbierski ’18]

• extendible in C 0 when e ̸= 0 [Dafermos ’05, Dafermos–Rodnianski

’05] (c.f. [Dafermos–Luk ’17] outside of symmetry)

• inextendible in C 2 [Luk–Oh ’19] and in C 0,1
loc for small data

[Sbierski ’20]
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A heuristic

Decay rates in exterior ⇝ (in)stability results in the interior.
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Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski ’05]

|φ||H + |∂vφ||H ≲ϵ,φ v−3+ϵ, (1)

and the generic L2 lower bound [Luk–Oh ’19]∫
H
v7+ϵ(∂vφ)

2 dv = ∞ for all ϵ > 0. (2)

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ,

or (2) and L2 upper bounds [Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v4(∂vφ)

2 dv <∞,

∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski ’05]

|φ||H + |∂vφ||H ≲ϵ,φ v−3+ϵ, (1)

and the generic L2 lower bound [Luk–Oh ’19]∫
H
v7+ϵ(∂vφ)

2 dv = ∞ for all ϵ > 0. (2)

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ,

or (2) and L2 upper bounds [Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v4(∂vφ)

2 dv <∞,

∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski ’05]

|φ||H + |∂vφ||H ≲ϵ,φ v−3+ϵ, (1)

and the generic L2 lower bound [Luk–Oh ’19]∫
H
v7+ϵ(∂vφ)

2 dv = ∞ for all ϵ > 0. (2)

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ,

or (2) and L2 upper bounds [Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v4(∂vφ)

2 dv <∞,

∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski ’05]

|φ||H + |∂vφ||H ≲ϵ,φ v−3+ϵ, (1)

and the generic L2 lower bound [Luk–Oh ’19]∫
H
v7+ϵ(∂vφ)

2 dv = ∞ for all ϵ > 0. (2)

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ,

or (2) and L2 upper bounds [Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v4(∂vφ)

2 dv <∞,

∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

15



Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski ’05]

|φ||H + |∂vφ||H ≲ϵ,φ v−3+ϵ, (1)

and the generic L2 lower bound [Luk–Oh ’19]∫
H
v7+ϵ(∂vφ)

2 dv = ∞ for all ϵ > 0. (2)

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ,

or (2) and L2 upper bounds [Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v4(∂vφ)

2 dv <∞,

∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

15



The new result

Mass inflation generically holds if [Dafermos–Rodnianski ’05,

Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

Theorem (G. ’24)

All solutions satisfy

|∂kvφ||H ≲ϵ v
−1−k+ϵ for 0 ≤ k ≤ 4.

Corollary

Mass inflation holds for generic solutions.
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Price’s law

Price’s law

At late times, linear waves on subextremal black hole spacetimes

behave like t−3.

[Price ’72; Dafermos-Rodnianski ’05; Tataru ’13; Donninger-Schlag-Soffer ’12;

Metcalfe-Tataru-Tohaneanu ’12; Angelopoulos-Aretakis-Gajic ’18, ’21; Hintz

’20; and many others...]
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Price’s law in a nonlinear and spherically symmetric setting

Theorem (Luk–Oh ’19, Luk–Oh ’24, G. ’24)

There are constants Ck ̸= 0, a functional L[φ], and a small

constant δ > 0 such that

|∂kvφ− CkL[φ]v
−3−k ||H ≲ v−3−k−δ for 0 ≤ k ≤ 2.

The quantity L[φ] is non-zero for generic solutions.

Mass inflation holds if [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ.

Corollary

Mass inflation holds for generic solutions.
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An application

Theorem (Van de Moortel ’25)

There exist (two-ended and spherically symmetric) asymptotically

flat black holes whose interior contains both a spacelike and a

null singularity.
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An outline of the proof



The scaling vector field

• On Minkowski, Sm = u∂u + v∂v satisfies [□m, Sm] = 2□m

• Decay for Sφ ⇝ improved decay for φ

[Klainerman ’85, Klainerman–Sideris ’96, Luk ’10,

Metcalfe–Tataru–Tohaneanu ’12, Tataru ’13]

The idea

To get |(v∂v )kφ||H ≲ v−1+ϵ, control |Skφ| for S |H ∼ v∂v .

Commute with S , control the errors, and use standard techniques

to get decay!
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Key ingredients of the proof

• Redshift effect on a subextremal black hole

[Dafermos–Rodnianski ’05]

• Energy decay (and pointwise decay) from rp-weighted energy

estimates [Dafermos–Rodnianski ’09]

• Reductive structure in the error terms arising from

commutation

• Hierarchy of weak and strong decay estimates for the

geometry

21



Reductive structure in the errors arising from commutation

E [ψ](τ2)+

∫∫
r−1−ϵ(∂ψ)2 ≲ E [ψ](τ1)+

∫∫
wUψ□ψ+· · · (w > 0)

We use three vector field commutators: U, V , and S .

• Energy estimate for φ closes on its own

• Energy estimate for Uφ sees errors involving φ

• Energy estimate for Vφ sees errors involving φ and Uφ

• Energy estimate for Sφ sees errors involving φ, Uφ, and Vφ

Takeaway

Order the commutators U < V < S!
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Hierarchy in the estimates for the geometry

• After commuting with Γ, derive (strong) time decay for Γg.

• Commuting with S requires (weak) boundedness and r-decay

of Sg!

• Write |Sg| ≲ u|Ug|+ v |V g| and use time decay for Ug and

V g.
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The gauge

The ingoing coordinate u is normalized at null infinity:

(−∂ur)|I = 1.

The outgoing coordinate v is normalized on a curve of constant r :

∂v r |{r=rH} = 1.

24



The three vector field commutators

• ∂ = (u, v) (used globally)

• ∂ = (u, r) (used near infinity)

• ∂ = (v , r) (used near the horizon)

U :=
1

(−∂ur)
∂u, V := χr≲R(r)∂v + (1− χr≲R(r))∂r ,

S := χr≲R(r)v∂v + (1− χr≲R(r))(u∂u + r∂r ).
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Reductive structure: the details

U :=
1

(−∂ur)
∂u, V := χr≲R(r)∂v + (1− χr≲R(r))∂r ,

S := χr≲R(r)v∂v + (1− χr≲R(r))(u∂u + r∂r ).

E [ψ](τ2)+

∫∫
r−1−ϵ(∂ψ)2 ≲ E [ψ](τ1)+

∫∫
wUψ□ψ+· · · (w > 0).

The global redshift vector field U

□Uφ = −κUUφ+ O(r−2)∂φ, where κ ≥ 0
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E [ψ](τ2)+

∫∫
r−1−ϵ(∂ψ)2 ≲ E [ψ](τ1)+

∫∫
wUψ□ψ+· · · (w > 0).

The scaling vector field S

• □Sφ = O(r−1+ϵ)∂
2
rφ+ l.o.t.

• Rewrite ∂
2
rφ = r−1∂r (rVφ) + l.o.t.

• □Sφ = O(r−2+ϵ)∂r (rVφ) + l.o.t.

Ep[Vφ](τ2) +

∫∫
r−3+3ϵ(∂r (rVφ))

2 ≲ Ep[Vφ](τ1), (p = 3ϵ).
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Summary of the proof

• Construct a scaling vector field commutator S with S |H ∼ v∂v

• Introduce vector field commutators U and V so that U, V ,

and S exhibit a reductive structure when U < V < S

• To close the energy estimate for Γφ, use the reductive

structure and (weak) boundedness and r -decay for Γg

obtained using the (strong) time decay for Γ′g with Γ′ < Γ

• Obtain (strong) time decay for Γφ

• Deduce v−1+ϵ decay for Γφ using standard techniques

• Take Γ = Sk for k large and use known results to obtain mass

inflation
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