

Mass inflation for spherically symmetric charged black holes

Onyx Gautam

January 20, 2026

Princeton University

Elaine Hubbard PDE Seminar, Georgia Tech

General relativity

A *spacetime* is a 4-manifold \mathcal{M}^{3+1} with a Lorentzian metric g solving the Einstein equations:

$$\text{Ric}(g) - \frac{1}{2}R(g)g = T,$$

where T is the *energy momentum tensor* of matter (scalar field, electromagnetism, perfect fluid,...)

General relativity

A *spacetime* is a 4-manifold \mathcal{M}^{3+1} with a Lorentzian metric g solving the Einstein equations:

$$\text{Ric}(g) - \frac{1}{2}R(g)g = T,$$

where T is the *energy momentum tensor* of matter (scalar field, electromagnetism, perfect fluid,...)

Example

Minkowski space: $\mathcal{M} = \mathbf{R}_{t,x,y,z}^{3+1}$, $T = 0$ and

$$g = -dt^2 + dx^2 + dy^2 + dz^2$$

Causal character of tangent vectors

We say $v \in T_p \mathcal{M}$ is

- *spacelike* if $g(v, v) > 0$
- *timelike* if $g(v, v) < 0$
- *null* if $g(v, v) = 0$

Curves with timelike or null tangent vector define *causality*.

Initial value formulation of Einstein's equations

$$\text{Ric}(g) - \frac{1}{2}R(g)g = T,$$

In the right coordinates, the Einstein equations are *quasilinear wave equations* for the metric g and the matter fields φ :

$$\begin{cases} g^{\alpha\beta}\partial_\alpha\partial_\beta g_{\mu\nu} + \mathcal{N}(g, \partial g) = \text{terms involving } \varphi \\ \text{equations for } \varphi \end{cases}$$

Initial value formulation of Einstein's equations

$$\text{Ric}(g) - \frac{1}{2}R(g)g = T,$$

In the right coordinates, the Einstein equations are *quasilinear wave equations* for the metric g and the matter fields φ :

$$\begin{cases} g^{\alpha\beta}\partial_\alpha\partial_\beta g_{\mu\nu} + \mathcal{N}(g, \partial g) = \text{terms involving } \varphi \\ \text{equations for } \varphi \end{cases}$$

Thm (Choquet-Bruhat '52, Choquet-Bruhat–Geroch '69)

Any Cauchy data set $(\Sigma, \bar{g}, \bar{k}, \bar{\varphi})$ for the Einstein equations coupled to a suitable matter model induces a unique *maximal* “globally hyperbolic” development

$$(\Sigma, \bar{g}, \bar{k}, \bar{\varphi}) \hookrightarrow (\mathcal{M}, g, \varphi)$$

Initial value formulation of Einstein's equations

Thm (Choquet-Bruhat '52, Choquet-Bruhat–Geroch '69)

Any Cauchy data set $(\Sigma, \bar{g}, \bar{k}, \bar{\varphi})$ for the Einstein equations coupled to a suitable matter model induces a unique *maximal* “globally hyperbolic” development

$$(\Sigma, \bar{g}, \bar{k}, \bar{\varphi}) \hookrightarrow (\mathcal{M}, g, \varphi)$$

Initial value formulation of Einstein's equations

Thm (Choquet-Bruhat '52, Choquet-Bruhat–Geroch '69)

Any Cauchy data set $(\Sigma, \bar{g}, \bar{k}, \bar{\varphi})$ for the Einstein equations coupled to a suitable matter model induces a unique *maximal* “globally hyperbolic” development

$$(\Sigma, \bar{g}, \bar{k}, \bar{\varphi}) \hookrightarrow (\mathcal{M}, g, \varphi)$$

Given the state of the universe at one instant of time (the gravitational field and matter fields), Einstein's equations uniquely determine the evolution for all later times.

Initial value formulation of Einstein's equations

Thm (Choquet-Bruhat '52, Choquet-Bruhat–Geroch '69)

Any Cauchy data set $(\Sigma, \bar{g}, \bar{k}, \bar{\varphi})$ for the Einstein equations coupled to a suitable matter model induces a unique *maximal* “globally hyperbolic” development

$$(\Sigma, \bar{g}, \bar{k}, \bar{\varphi}) \hookrightarrow (\mathcal{M}, g, \varphi)$$

Given the state of the universe at one instant of time (the gravitational field and matter fields), Einstein's equations uniquely determine the evolution for all later times.

Example

Minkowski space is the unique solution arising from the data $(\mathbf{R}^3, \delta, 0, 0)$. It is *geodesically complete*, hence inextendible.

What is a black hole?

A *black hole* is a region of spacetime that “cannot be seen” by “far away observers.”

All light cones in the black hole region “point inwards.”

The past boundary \mathcal{H} of the black hole region is called the *event horizon*.

The Reissner–Nordström metric

This metric describes a spherically symmetric charged black hole with mass M and charge \mathbf{e} :

$$g_{M,\mathbf{e}} = -\left(1 - \frac{2M}{r} + \frac{\mathbf{e}^2}{r^2}\right) dt^2 + \left(1 - \frac{2M}{r} + \frac{\mathbf{e}^2}{r^2}\right)^{-1} dr^2 + r^2 g_{\mathbb{S}^2},$$

It has an *event horizon* \mathcal{H} at $r_+ = M + \sqrt{M^2 - \mathbf{e}^2}$ and a *Cauchy horizon* \mathcal{CH} at $r = M - \sqrt{M^2 - \mathbf{e}^2}$.

We work entirely in the *subextremal* case $|\mathbf{e}| < M$.

The Reissner–Nordström metric

This metric describes a spherically symmetric charged black hole with mass M and charge \mathbf{e} :

$$g_{M,\mathbf{e}} = -\left(1 - \frac{2M}{r} + \frac{\mathbf{e}^2}{r^2}\right) dt^2 + \left(1 - \frac{2M}{r} + \frac{\mathbf{e}^2}{r^2}\right)^{-1} dr^2 + r^2 g_{\mathbb{S}^2},$$

It has an *event horizon* \mathcal{H} at $r_+ = M + \sqrt{M^2 - \mathbf{e}^2}$ and a *Cauchy horizon* \mathcal{CH} at $r = M - \sqrt{M^2 - \mathbf{e}^2}$.

We work entirely in the *subextremal* case $|\mathbf{e}| < M$.

Important fact

The Cauchy horizon of Reissner–Nordström is *smooth*!

Strong cosmic censorship

Conjecture

The maximal development of a generic asymptotically flat solution to the Einstein equations is inextendible as a suitably regular Lorentzian manifold.

Strong cosmic censorship

Conjecture

The maximal development of a **generic** asymptotically flat solution to the Einstein equations is inextendible as a **suitably regular** Lorentzian manifold.

The matter model

We study the Einstein–Maxwell–(uncharged) scalar field system:

$$\begin{cases} \text{Ric}(g) - \frac{1}{2}gR(g) = 2(T^{(\text{sf})} + T^{(\text{em})}), \\ T_{\alpha\beta}^{(\text{sf})} = \partial_\alpha\varphi\partial_\beta\varphi - \frac{1}{2}g_{\alpha\beta}\partial^\mu\varphi\partial_\mu\varphi, \\ T_{\alpha\beta}^{(\text{em})} = F_\alpha^\nu F_{\beta\nu} - \frac{1}{4}g_{\alpha\beta}F^{\mu\nu}F_{\mu\nu}, \\ \square_g\varphi = 0, \quad dF = 0, \quad \text{div}_g F = 0. \end{cases}$$

The matter model

We study the Einstein–Maxwell–(uncharged) scalar field system:

$$\begin{cases} \text{Ric}(g) - \frac{1}{2}gR(g) = 2(T^{(\text{sf})} + T^{(\text{em})}), \\ T_{\alpha\beta}^{(\text{sf})} = \partial_\alpha\varphi\partial_\beta\varphi - \frac{1}{2}g_{\alpha\beta}\partial^\mu\varphi\partial_\mu\varphi, \\ T_{\alpha\beta}^{(\text{em})} = F_\alpha^\nu F_{\beta\nu} - \frac{1}{4}g_{\alpha\beta}F^{\mu\nu}F_{\mu\nu}, \\ \square_g\varphi = 0, \quad dF = 0, \quad \text{div}_g F = 0. \end{cases}$$

We work entirely in *spherical symmetry*, where

$$g = -\Omega^2 du dv + r^2 g_{\mathbb{S}^2}, \quad F = \frac{\Omega^2 \mathbf{e}}{2r^2} du \wedge dv \quad (\mathbf{e} \in \mathbf{R}).$$

The matter model

We study the Einstein–Maxwell–(uncharged) scalar field system:

$$\begin{cases} \text{Ric}(g) - \frac{1}{2}gR(g) = 2(T^{(\text{sf})} + T^{(\text{em})}), \\ T_{\alpha\beta}^{(\text{sf})} = \partial_\alpha\varphi\partial_\beta\varphi - \frac{1}{2}g_{\alpha\beta}\partial^\mu\varphi\partial_\mu\varphi, \\ T_{\alpha\beta}^{(\text{em})} = F_\alpha^\nu F_{\beta\nu} - \frac{1}{4}g_{\alpha\beta}F^{\mu\nu}F_{\mu\nu}, \\ \square_g\varphi = 0, \quad dF = 0, \quad \text{div}_g F = 0. \end{cases}$$

We work entirely in *spherical symmetry*, where

$$g = -\Omega^2 du dv + r^2 g_{\mathbb{S}^2}, \quad F = \frac{\Omega^2 \mathbf{e}}{2r^2} du \wedge dv \quad (\mathbf{e} \in \mathbf{R}).$$

On Reissner–Nordström, the (renormalized) *Hawking mass*

$$\varpi = \frac{r}{2} \left(1 + \frac{4\partial_u r \partial_v r}{\Omega^2} \right) + \frac{\mathbf{e}^2}{2r}$$

is constant and equal to the black hole mass M .

The Hawking mass controls the curvature

On Reissner–Nordström, the (renormalized) *Hawking mass*

$$\varpi = \frac{r}{2} \left(1 + \frac{4\partial_u r \partial_v r}{\Omega^2} \right) + \frac{e^2}{2r}$$

is constant and equal to the black hole mass M .

Important fact

We have (when $r \geq r_0 > 0$)

$$\text{Riem}^{\alpha\beta\gamma\delta} \text{Riem}_{\alpha\beta\gamma\delta} \gtrsim \varpi + O(1)$$

A global existence theorem

Theorem (Dafermos '05, '14; Kommemi '13)

Suitable Cauchy data for the spherically symmetric Einstein–Maxwell–scalar field system leads to a global solution containing a black hole region.

Instability of the Cauchy horizon

Linear effects (on Reissner–Nordström):

- Infinite blueshift effect at \mathcal{CH} [Penrose '68, Simpson–Penrose '73, McNamara '78, Chandrasekhar–Hartle '82]

Instability of the Cauchy horizon

Linear effects (on Reissner–Nordström):

- Infinite blueshift effect at \mathcal{CH} [Penrose '68, Simpson–Penrose '73, McNamara '78, Chandrasekhar–Hartle '82]
- Linear waves are in $L^\infty \setminus H^1_{\text{loc}}$ near \mathcal{CH} [Franzen '16, Luk–Oh '17]

Instability of the Cauchy horizon

Linear effects (on Reissner–Nordström):

- Infinite blueshift effect at \mathcal{CH} [Penrose '68, Simpson–Penrose '73, McNamara '78, Chandrasekhar–Hartle '82]
- Linear waves are in $L^\infty \setminus H^1_{\text{loc}}$ near \mathcal{CH} [Franzen '16, Luk–Oh '17]

Nonlinear effects:

- Einstein–null dust with one dust [Hiscock '81]

Instability of the Cauchy horizon

Linear effects (on Reissner–Nordström):

- Infinite blueshift effect at \mathcal{CH} [Penrose '68, Simpson–Penrose '73, McNamara '78, Chandrasekhar–Hartle '82]
- Linear waves are in $L^\infty \setminus H^1_{\text{loc}}$ near \mathcal{CH} [Franzen '16, Luk–Oh '17]

Nonlinear effects:

- Einstein–null dust with one dust [Hiscock '81]
- *mass inflation* with two dusts: $\varpi|_{\mathcal{CH}} \equiv \infty$ [Poisson–Israel '89, '90; Ori '91]

Results on strong cosmic censorship

Solutions are generically:

Results on strong cosmic censorship

Solutions are generically:

- inextendible in C^0 when $\mathbf{e} = 0$ [Christodoulou '90s, Sbierski '18]

Results on strong cosmic censorship

Solutions are generically:

- inextendible in C^0 when $\mathbf{e} = 0$ [Christodoulou '90s, Sbierski '18]
- extendible in C^0 when $\mathbf{e} \neq 0$ [Dafermos '05, Dafermos–Rodnianski '05] (c.f. [Dafermos–Luk '17] outside of symmetry)

Results on strong cosmic censorship

Solutions are generically:

- inextendible in C^0 when $\mathbf{e} = 0$ [Christodoulou '90s, Sbierski '18]
- extendible in C^0 when $\mathbf{e} \neq 0$ [Dafermos '05, Dafermos–Rodnianski '05] (c.f. [Dafermos–Luk '17] outside of symmetry)
- inextendible in C^2 [Luk–Oh '19] and in $C_{\text{loc}}^{0,1}$ for small data [Sbierski '20]

A heuristic

Decay rates in exterior \rightsquigarrow (in)stability results in the interior.

Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski '05]

$$|\varphi|_{\mathcal{H}} + |\partial_v \varphi|_{\mathcal{H}} \lesssim_{\epsilon, \varphi} v^{-3+\epsilon}, \quad (1)$$

and the generic L^2 lower bound [Luk–Oh '19]

$$\int_{\mathcal{H}} v^{7+\epsilon} (\partial_v \varphi)^2 \, dv = \infty \text{ for all } \epsilon > 0. \quad (2)$$

Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski '05]

$$|\varphi|_{\mathcal{H}} + |\partial_v \varphi|_{\mathcal{H}} \lesssim_{\epsilon, \varphi} v^{-3+\epsilon}, \quad (1)$$

and the generic L^2 lower bound [Luk–Oh '19]

$$\int_{\mathcal{H}} v^{7+\epsilon} (\partial_v \varphi)^2 \, dv = \infty \text{ for all } \epsilon > 0. \quad (2)$$

Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski '05]

$$|\varphi|_{\mathcal{H}} + |\partial_v \varphi|_{\mathcal{H}} \lesssim_{\epsilon, \varphi} v^{-3+\epsilon}, \quad (1)$$

and the generic L^2 lower bound [Luk–Oh '19]

$$\int_{\mathcal{H}} v^{7+\epsilon} (\partial_v \varphi)^2 dv = \infty \text{ for all } \epsilon > 0. \quad (2)$$

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos '05]:

$$|\partial_v \varphi|_{\mathcal{H}}(v) \gtrsim v^{-9+\epsilon},$$

or (2) and L^2 upper bounds [Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^4 (\partial_v \varphi)^2 dv < \infty, \int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 dv < \infty \text{ for some } k \geq 2.$$

Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski '05]

$$|\varphi|_{\mathcal{H}} + |\partial_v \varphi|_{\mathcal{H}} \lesssim_{\epsilon, \varphi} v^{-3+\epsilon}, \quad (1)$$

and the generic L^2 lower bound [Luk–Oh '19]

$$\int_{\mathcal{H}} v^{7+\epsilon} (\partial_v \varphi)^2 dv = \infty \text{ for all } \epsilon > 0. \quad (2)$$

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos '05]:

$$|\partial_v \varphi|_{\mathcal{H}}(v) \gtrsim v^{-9+\epsilon},$$

or (2) and L^2 upper bounds [Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^4 (\partial_v \varphi)^2 dv < \infty, \int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 dv < \infty \text{ for some } k \geq 2.$$

Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski '05]

$$|\varphi|_{\mathcal{H}} + |\partial_v \varphi|_{\mathcal{H}} \lesssim_{\epsilon, \varphi} v^{-3+\epsilon}, \quad (1)$$

and the generic L^2 lower bound [Luk–Oh '19]

$$\int_{\mathcal{H}} v^{7+\epsilon} (\partial_v \varphi)^2 dv = \infty \text{ for all } \epsilon > 0. \quad (2)$$

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos '05]:

$$|\partial_v \varphi|_{\mathcal{H}}(v) \gtrsim v^{-9+\epsilon},$$

or (2) and L^2 upper bounds [Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^4 (\partial_v \varphi)^2 dv < \infty, \quad \int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 dv < \infty \text{ for some } k \geq 2.$$

The new result

Mass inflation generically holds if [Dafermos–Rodnianski '05, Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 \, dv < \infty \text{ for some } k \geq 2.$$

The new result

Mass inflation generically holds if [Dafermos–Rodnianski '05, Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 \, dv < \infty \text{ for some } k \geq 2.$$

Theorem (G. '24)

All solutions satisfy

$$|\partial_v^k \varphi|_{\mathcal{H}} \lesssim_{\epsilon} v^{-1-k+\epsilon} \text{ for } 0 \leq k \leq 4.$$

The new result

Mass inflation generically holds if [Dafermos–Rodnianski '05, Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 \, dv < \infty \text{ for some } k \geq 2.$$

Theorem (G. '24)

All solutions satisfy

$$|\partial_v^k \varphi|_{\mathcal{H}} \lesssim_{\epsilon} v^{-1-k+\epsilon} \text{ for } 0 \leq k \leq 4.$$

The new result

Mass inflation generically holds if [Dafermos–Rodnianski '05, Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 \, dv < \infty \text{ for some } k \geq 2.$$

Theorem (G. '24)

All solutions satisfy

$$|\partial_v^k \varphi|_{\mathcal{H}} \lesssim_{\epsilon} v^{-1-k+\epsilon} \text{ for } 0 \leq k \leq 4.$$

The new result

Mass inflation generically holds if [Dafermos–Rodnianski '05, Luk–Oh–Shlapentokh–Rothman '22]:

$$\int_{\mathcal{H}} v^8 (\partial_v^k \varphi)^2 \, dv < \infty \text{ for some } k \geq 2.$$

Theorem (G. '24)

All solutions satisfy

$$|\partial_v^k \varphi|_{\mathcal{H}} \lesssim_{\epsilon} v^{-1-k+\epsilon} \text{ for } 0 \leq k \leq 4.$$

Corollary

Mass inflation holds for generic solutions.

Price's law

At late times, linear waves on subextremal black hole spacetimes behave like t^{-3} .

[Price '72; Dafermos-Rodnianski '05; Tataru '13; Donninger-Schlag-Soffer '12; Metcalfe-Tataru-Tohaneanu '12; Angelopoulos-Aretakis-Gajic '18, '21; Hintz '20; and many others...]

Theorem (Luk–Oh '19, Luk–Oh '24, G. '24)

There are constants $C_k \neq 0$, a functional $\mathfrak{L}[\varphi]$, and a small constant $\delta > 0$ such that

$$|\partial_v^k \varphi - C_k \mathfrak{L}[\varphi] v^{-3-k}| \lesssim v^{-3-k-\delta} \text{ for } 0 \leq k \leq 2.$$

The quantity $\mathfrak{L}[\varphi]$ is non-zero for generic solutions.

Price's law in a nonlinear and spherically symmetric setting

Theorem (Luk–Oh '19, Luk–Oh '24, G. '24)

There are constants $C_k \neq 0$, a functional $\mathfrak{L}[\varphi]$, and a small constant $\delta > 0$ such that

$$|\partial_v^k \varphi - C_k \mathfrak{L}[\varphi] v^{-3-k}| \lesssim v^{-3-k-\delta} \text{ for } 0 \leq k \leq 2.$$

The quantity $\mathfrak{L}[\varphi]$ is non-zero for generic solutions.

Mass inflation holds if [Dafermos '05]:

$$|\partial_v \varphi| \lesssim v^{-9+\epsilon}.$$

Theorem (Luk–Oh '19, Luk–Oh '24, G. '24)

There are constants $C_k \neq 0$, a functional $\mathfrak{L}[\varphi]$, and a small constant $\delta > 0$ such that

$$|\partial_v^k \varphi - C_k \mathfrak{L}[\varphi] v^{-3-k}| \lesssim v^{-3-k-\delta} \text{ for } 0 \leq k \leq 2.$$

The quantity $\mathfrak{L}[\varphi]$ is non-zero for generic solutions.

Mass inflation holds if [Dafermos '05]:

$$|\partial_v \varphi| \lesssim v^{-9+\epsilon}.$$

Corollary

Mass inflation holds for generic solutions.

An application

Theorem (Van de Moortel '25)

There exist (two-ended and spherically symmetric) asymptotically flat black holes whose interior contains both a spacelike and a null singularity.

An outline of the proof

The scaling vector field

- On Minkowski, $S_m = u\partial_u + v\partial_v$ satisfies $[\square_m, S_m] = 2\square_m$

The scaling vector field

- On Minkowski, $S_m = u\partial_u + v\partial_v$ satisfies $[\square_m, S_m] = 2\square_m$
- Decay for $S\varphi \rightsquigarrow$ improved decay for φ
[Klainerman '85, Klainerman–Sideris '96, Luk '10,
Metcalf–Tataru–Tohaneanu '12, Tataru '13]

The scaling vector field

- On Minkowski, $S_m = u\partial_u + v\partial_v$ satisfies $[\square_m, S_m] = 2\square_m$
- Decay for $S\varphi \rightsquigarrow$ improved decay for φ
[Klainerman '85, Klainerman–Sideris '96, Luk '10,
Metcalfe–Tataru–Tohaneanu '12, Tataru '13]

The idea

To get $|(v\partial_v)^k \varphi||_{\mathcal{H}} \lesssim v^{-1+\epsilon}$, control $|S^k \varphi|$ for $S|_{\mathcal{H}} \sim v\partial_v$.

The scaling vector field

- On Minkowski, $S_m = u\partial_u + v\partial_v$ satisfies $[\square_m, S_m] = 2\square_m$
- Decay for $S\varphi \rightsquigarrow$ improved decay for φ
[Klainerman '85, Klainerman–Sideris '96, Luk '10,
Metcalfe–Tataru–Tohaneanu '12, Tataru '13]

The idea

To get $|(v\partial_v)^k \varphi||_{\mathcal{H}} \lesssim v^{-1+\epsilon}$, control $|S^k \varphi|$ for $S|_{\mathcal{H}} \sim v\partial_v$.

Commute with S , control the errors, and use standard techniques to get decay!

The scaling vector field

- On Minkowski, $S_m = u\partial_u + v\partial_v$ satisfies $[\square_m, S_m] = 2\square_m$
- Decay for $S\varphi \rightsquigarrow$ improved decay for φ
[Klainerman '85, Klainerman–Sideris '96, Luk '10,
Metcalfe–Tataru–Tohaneanu '12, Tataru '13]

The idea

To get $|(v\partial_v)^k \varphi||_{\mathcal{H}} \lesssim v^{-1+\epsilon}$, control $|S^k \varphi|$ for $S|_{\mathcal{H}} \sim v\partial_v$.

Commute with S , **control the errors**, and use standard techniques to get decay!

Key ingredients of the proof

- Redshift effect on a subextremal black hole
[Dafermos–Rodnianski '05]
- Energy decay (and pointwise decay) from r^p -weighted energy estimates [Dafermos–Rodnianski '09]
- Reductive structure in the error terms arising from commutation
- Hierarchy of weak and strong decay estimates for the geometry

Reductive structure in the errors arising from commutation

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U\psi \square\psi + \dots (w > 0)$$

We use three vector field commutators: U , V , and S .

- Energy estimate for φ closes on its own
- Energy estimate for $U\varphi$ sees errors involving φ
- Energy estimate for $V\varphi$ sees errors involving φ and $U\varphi$
- Energy estimate for $S\varphi$ sees errors involving φ , $U\varphi$, and $V\varphi$

Reductive structure in the errors arising from commutation

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U\psi \square\psi + \dots (w > 0)$$

We use three vector field commutators: U , V , and S .

- Energy estimate for φ closes on its own
- Energy estimate for $U\varphi$ sees errors involving φ
- Energy estimate for $V\varphi$ sees errors involving φ and $U\varphi$
- Energy estimate for $S\varphi$ sees errors involving φ , $U\varphi$, and $V\varphi$

Takeaway

Order the commutators $U < V < S$!

Hierarchy in the estimates for the geometry

- After commuting with Γ , derive (strong) *time decay* for Γg .
- Commuting with S requires (weak) *boundedness and r -decay* of Sg !
- Write $|Sg| \lesssim u|Ug| + v|Vg|$ and use time decay for Ug and Vg .

The gauge

The ingoing coordinate u is normalized at null infinity:

$$(-\partial_u r)|_{\mathcal{I}} = 1.$$

The outgoing coordinate v is normalized on a curve of constant r :

$$\partial_v r|_{\{r=r_{\mathcal{H}}\}} = 1.$$

The three vector field commutators

- $\partial = (u, v)$ (used globally)
- $\bar{\partial} = (u, r)$ (used near infinity)
- $\underline{\partial} = (v, r)$ (used near the horizon)

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$

$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The global redshift vector field U

$$\square U \varphi = -\kappa U U \varphi + O(r^{-2}) \partial \varphi, \text{ where } \kappa \geq 0$$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$

$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The global redshift vector field U

$$\square U \varphi = -\kappa U U \varphi + O(r^{-2}) \partial \varphi, \text{ where } \kappa \geq 0$$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$

$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The global redshift vector field U

$$\square U \varphi = -\kappa U U \varphi + O(r^{-2}) \partial \varphi, \text{ where } \kappa \geq 0$$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The timelike-outgoing vector field V

- $\square \underline{\partial}_v \varphi = O(r^{-1}) \partial U \varphi + O(r^{-2}) \partial \varphi$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The timelike-outgoing vector field V

- $\square \underline{\partial}_v \varphi = O(r^{-1}) \partial U \varphi + O(r^{-2}) \partial \varphi$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The timelike-outgoing vector field V

- $\square \underline{\partial}_v \varphi = O(r^{-1}) \partial U \varphi + O(r^{-2}) \partial \varphi$
- $\square \bar{\partial}_r \varphi = O(r^{-2}) \bar{\partial}_r^2 \varphi + O(r^{-2}) \partial \varphi$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The timelike-outgoing vector field V

- $\square \underline{\partial}_v \varphi = O(r^{-1}) \partial U \varphi + O(r^{-2}) \partial \varphi$
- $\square \bar{\partial}_r \varphi = O(r^{-2}) \bar{\partial}_r^2 \varphi + O(r^{-2}) \partial \varphi$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The timelike-outgoing vector field V

- $\square \underline{\partial}_v \varphi = O(r^{-1}) \partial U \varphi + O(r^{-2}) \partial \varphi$
- $\square \bar{\partial}_r \varphi = O(r^{-2}) \bar{\partial}_r^2 \varphi + O(r^{-2}) \partial \varphi$
- $\square V \varphi = \mathbf{1}_{r \geq R} O(r^{-2}) \partial V \varphi + O(r^{-2}) [\partial U \varphi + \partial \varphi]$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) (u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The timelike-outgoing vector field V

- $\square \underline{\partial}_v \varphi = O(r^{-1}) \partial U \varphi + O(r^{-2}) \partial \varphi$
- $\square \bar{\partial}_r \varphi = O(r^{-2}) \bar{\partial}_r^2 \varphi + O(r^{-2}) \partial \varphi$
- $\square V \varphi = \mathbf{1}_{r \geq R} O(r^{-2}) \partial V \varphi + O(r^{-2}) [\partial U \varphi + \partial \varphi]$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r))(u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The scaling vector field S

- $\square S \varphi = O(r^{-1+\epsilon}) \bar{\partial}_r^2 \varphi + \text{l.o.t.}$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$
$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r))(u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The scaling vector field S

- $\square S \varphi = O(r^{-1+\epsilon}) \bar{\partial}_r^2 \varphi + \text{l.o.t.}$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$

$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r))(u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The scaling vector field S

- $\square S \varphi = O(r^{-1+\epsilon}) \bar{\partial}_r^2 \varphi + \text{l.o.t.}$
- Rewrite $\bar{\partial}_r^2 \varphi = r^{-1} \bar{\partial}_r(r V \varphi) + \text{l.o.t.}$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$

$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r))(u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The scaling vector field S

- $\square S \varphi = O(r^{-1+\epsilon}) \bar{\partial}_r^2 \varphi + \text{l.o.t.}$
- Rewrite $\bar{\partial}_r^2 \varphi = r^{-1} \bar{\partial}_r(r V \varphi) + \text{l.o.t.}$
- $\square S \varphi = O(r^{-2+\epsilon}) \bar{\partial}_r(r V \varphi) + \text{l.o.t.}$

Reductive structure: the details

$$U := \frac{1}{(-\partial_u r)} \partial_u, \quad V := \chi_{r \lesssim R}(r) \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r)) \bar{\partial}_r,$$

$$S := \chi_{r \lesssim R}(r) v \underline{\partial}_v + (1 - \chi_{r \lesssim R}(r))(u \bar{\partial}_u + r \bar{\partial}_r).$$

$$E[\psi](\tau_2) + \iint r^{-1-\epsilon} (\partial\psi)^2 \lesssim E[\psi](\tau_1) + \iint w U \psi \square \psi + \dots \quad (w > 0).$$

The scaling vector field S

- $\square S \varphi = O(r^{-1+\epsilon}) \bar{\partial}_r^2 \varphi + \text{l.o.t.}$
- Rewrite $\bar{\partial}_r^2 \varphi = r^{-1} \bar{\partial}_r(r V \varphi) + \text{l.o.t.}$
- $\square S \varphi = O(r^{-2+\epsilon}) \bar{\partial}_r(r V \varphi) + \text{l.o.t.}$

$$E_p[V\varphi](\tau_2) + \iint r^{-3+3\epsilon} (\bar{\partial}_r(r V \varphi))^2 \lesssim E_p[V\varphi](\tau_1), \quad (p = 3\epsilon).$$

Summary of the proof

- Construct a scaling vector field commutator S with $S|_{\mathcal{H}} \sim v\partial_v$
- Introduce vector field commutators U and V so that U, V , and S exhibit a reductive structure when $U < V < S$
- To close the energy estimate for $\Gamma\varphi$, use the reductive structure and (weak) boundedness and r -decay for Γg obtained using the (strong) time decay for $\Gamma'g$ with $\Gamma' < \Gamma$
- Obtain (strong) time decay for $\Gamma\varphi$
- Deduce $v^{-1+\epsilon}$ decay for $\Gamma\varphi$ using standard techniques
- Take $\Gamma = S^k$ for k large and use known results to obtain mass inflation