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Which picture is generic?

Figure 1: Schwarzschild
Figure 2: Subextremal

Reissner–Nordström.

Figures from [Dafermos–Luk ’17]
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Strong cosmic censorship

Conjecture

The maximal development of a generic asymptotically flat

solution to the Einstein equations is inextendible as a suitably

regular Lorentzian manifold.
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The Reissner–Nordström metric

This metric describes a spherically symmetric charged black hole

with mass M and charge e:

gM,e = −
(
1− 2M

r
+

e2

r2

)
dt2 +

(
1− 2M

r
+

e2

r2

)−1
dr2 + r2gS2 ,

We work entirely in the subextremal case |e| < M.
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The matter model

We study the Einstein–Maxwell–(uncharged) scalar field system:
Ric(g)− 1

2gR(g) = 2(T (sf) + T (em)),

T
(sf)
αβ = ∂αφ∂βφ− 1

2gαβ∂
µφ∂µφ,

T
(em)
αβ = Fα

νFβν − 1
4gαβF

µνFµν ,

□gφ = 0, dF = 0, divgF = 0.

We work entirely in spherical symmetry, where

g = −Ω2 du dv + r2gS2 , F =
Ω2e

2r2
du ∧ dv (e ∈ R).

On Reissner–Nordström, the Hawking mass

ϖ =
r

2

(
1 +

4∂ur∂v r

Ω2

)
+

e2

2r

is constant and equal to the black hole mass M.
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The a priori picture

Figure 3: The a priori Penrose diagram for solutions to this model.

[Dafermos ’05, Dafermos ’14, Kommemi ’13]
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Instability of the Cauchy horizon

Linear effects (on Reissner–Nordström):

• Infinite blueshift effect at CH [Penrose ’68, Simpson–Penrose ’73,

McNamara ’78, Chandrasekhar–Hartle ’82]

• Linear waves are in L∞ \ H1
loc near CH [Franzen ’16, Luk–Oh ’17]

Nonlinear effects:

• Einstein–null dust with one dust [Hiscock ’81]

• mass inflation with two dusts: ϖ|CH ≡ ∞ [Poisson–Israel ’89,

’90; Ori ’91]

The extremal case

Mass inflation does not occur! [Gajic–Luk ’17]
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Results on strong cosmic censorship

Solutions are generically:

• inextendible in C 0 when e = 0 [Christodoulou ’90s]

• extendible in C 0 when e ̸= 0 [Dafermos ’05, Dafermos–Rodnianski

’05] (c.f. [Dafermos–Luk ’17] outside of symmetry)

• inextendible in C 2 [Luk–Oh ’19] and in C 0,1
loc for small data

[Sbierski ’20]
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A heuristic

Decay rates in exterior ⇝ (in)stability results in the interior.
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Best known results in the exterior

We know the pointwise upper bounds [Dafermos–Rodnianski ’05]

|φ||H + |∂vφ||H ≲ϵ,φ v−3+ϵ, (1)

and the generic L2 lower bound [Luk–Oh ’19]∫
H
v7+ϵ(∂vφ)

2 dv = ∞ for all ϵ > 0. (2)

Mass inflation generically holds if

we have (1) and a pointwise lower bound [Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ,

or (2) and L2 upper bounds [Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v4(∂vφ)

2 dv <∞,

∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.
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The new result

Recall that mass inflation generically holds if [Dafermos–Rodnianski

’05, Luk–Oh–Shlapentokh-Rothman ’22]:∫
H
v8(∂kvφ)

2 dv <∞ for some k ≥ 2.

Theorem (G. ’24)

All solutions satisfy

|∂kvφ||H ≲ϵ v
−1−k+ϵ for 0 ≤ k ≤ 4.

Corollary

Mass inflation holds for generic solutions.
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Price’s law

Price’s law

At late times, linear waves on subextremal black hole spacetimes

behave like t−3.

[Price ’72; Dafermos-Rodnianski ’05; Tataru ’13; Donninger-Schlag-Soffer ’12;

Metcalfe-Tataru-Tohaneanu ’12; Angelopoulos-Aretakis-Gajic ’18, ’21; Hintz

’20; and many others...]
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Price’s law in a nonlinear and spherically symmetric setting

Theorem (Luk–Oh ’19, Luk–Oh ’24, G. ’24)

There are constants Ck ̸= 0, a functional L[φ], and a small

δ > 0, such that

|∂kvφ− CkL[φ]v
−3−k ||H ≲ v−3−k−δ for 0 ≤ k ≤ 2.

The quantity L[φ] is non-zero for generic solutions.

Recall that mass inflation holds if we have a pointwise lower bound

[Dafermos ’05]:

|∂vφ||H(v) ≳ v−9+ϵ.

Corollary

Mass inflation holds for generic solutions.
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An application

Theorem (Van de Moortel ’25)

There exist (two-ended and spherically symmetric) asymptotically

flat black holes whose interior contains both a spacelike and a

null singularity.

14



An outline of the proof



The region of spacetime under consideration

Figure 4: We work in the late-time region Rchar.
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The foliation of the exterior region

Figure 5: We foliate the exterior region (at late-times) by bifurcate null

hypersurfaces Στ .
16



The scaling vector field

• On Minkowski, Sm = u∂u + v∂v satisfies [□m, Sm] = 2□m

• Decay for Sφ ⇝ improved decay for φ

[Klainerman ’85, Klainerman–Sideris ’96, Luk ’10,

Metcalfe–Tataru–Tohaneanu ’12, Tataru ’13]

The idea

To get |(v∂v )kφ||H ≲ v−1+ϵ, control |Skφ| for S ∼ v∂v at H.

Commute with S , control the errors, and use standard techniques

to get decay!
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Key ingredients of the proof

• Redshift effect on a subextremal black hole

[Dafermos–Rodnianski ’05]

• Energy decay (and pointwise decay) from rp-weighted energy

estimates [Dafermos–Rodnianski ’09]

• Reductive structure in the error terms arising from

commutation

• Hierarchy of weak and strong decay estimates for the

geometry

18



Reductive structure in the errors arising from commutation

We use three vector field commutators, U, V , and S .

• Energy estimate for φ closes on its own

• Energy estimate for Uφ sees errors involving φ

• Energy estimate for Vφ sees errors involving φ and Uφ

• Energy estimate for Sφ sees errors involving φ, Uφ, and Vφ

Takeaway

Order the commutators U < V < S!
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Hierarchy in the estimates for the geometry

• After commuting with Γ, derive (strong) decay for Γg.

• Commuting with S requires (weak) boundedness of Sg!

• Write |Sg| ≲ u|Ug|+ v |V g| and use decay for Ug and V g.

20



The gauge

The ingoing coordinate u is normalized at null infinity:

(−∂ur)|I = 1.

The outgoing coordinate v is normalized on a curve of constant r :

∂v r |{r=rH} = 1.

21



The three vector field commutators

• ∂ = (u, v) (used globally)

• ∂ = (u, r) (used near I)
• ∂ = (v , r) (used near H)

U :=
1

(−∂ur)
∂u, V := χr≲R(r)∂v + (1− χr≲R(r))∂r ,

S := χr≲R(r)v∂v + (1− χr≲R(r))(u∂u + r∂r ).

22



Reductive structure: the details

U :=
1

(−∂ur)
∂u, V := χr≲R(r)∂v + (1− χr≲R(r))∂r ,

S := χr≲R(r)v∂v + (1− χr≲R(r))(u∂u + r∂r ).

E [ψ](τ2)+

∫∫
r−1−ϵ(∂ψ)2 ≲ E [ψ](τ1)+

∫∫
wUψ□ψ+· · · (w > 0).

The global redshift vector field U

□Uφ = −κ∂Uφ+ O(r−2)∂φ, where κ ≥ 0

23
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