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Which picture is generic?

Figure 1: Schwarzschild

Figure 2: Subextremal
Reissner—Nordstrom.

Figures from [Dafermos—Luk '17]
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The Reissner—Nordstrom metric

This metric describes a spherically symmetric charged black hole
with mass M and charge e:

2M €2 oM e\ -1
gM,e:_<1—7+e*2) dtz—l—(l———}—%) dr2—§—r2g52,
r r r r

We work entirely in the subextremal case |e| < M.



The matter model

We study the Einstein-Maxwell-(uncharged) scalar field system:

Ric(g) — 2gR(g) = 2(T¢H 4 Tem),

f
T,fjg) = Bappp — 38ap0" 0y,

T(em) _ FaVF[)’u o %gaﬁ Fhv FIW?

«

Ogp=0, dF=0, divgF=0.
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The matter model

We study the Einstein-Maxwell-(uncharged) scalar field system:

Ric(g) — 2gR(g) = 2(T¢H 4 Tem),

f
T,fjg) = Bappp — 38ap0" 0y,

T(em) _ FaVF[)’y o %gaﬁ Fhv FIW?

«

g =0, dF =0, divgF = 0.
We work entirely in spherical symmetry, where

QZ
g=-0%dudv+rlgg, F= TSdu/\ dv (e € R).

On Reissner—Nordstrom, the Hawking mass

r 40,rd,r e?

~ (1 ) il

“ 2( T )t

is constant and equal to the black hole mass M.



he a priori picture

Figure 3: The a priori Penrose diagram for solutions to this model.
[Dafermos '05, Dafermos '14, Kommemi '13]
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Instability of the Cauchy horizon

Linear effects (on Reissner—Nordstrom):

e Infinite blueshift effect at CH [Penrose '68, Simpson—Penrose '73,
McNamara '78, Chandrasekhar—Hartle '82]

e Linear waves are in L°°\ HL_ near CH [Franzen '16, Luk-Oh '17]

Nonlinear effects:

e Einstein—null dust with one dust [Hiscock '81]

e mass inflation with two dusts: w|cy = 00 [Poisson-Israel '89,
'90; Ori '91]

The extremal case

Mass inflation does not occur! [Gajic—Luk '17]
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Results on strong cosmic censorship

Solutions are generically:

e inextendible in C® when e = 0 [Christodoulou '90s]

o extendible in C° when e # 0 [Dafermos '05, Dafermos—Rodnianski
'05] (c.f. [Dafermos-Luk '17] outside of symmetry)

e inextendible in C? [Luk-Oh '19] and in Cl?)cl for small data
[Sbierski '20]



Decay rates in exterior ~~ (in)stability results in the interior.



Best known results in the exterior

We know the pointwise upper bounds [Dafermos—Rodnianski '05]
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The new result

Recall that mass inflation generically holds if [Dafermos—Rodnianski
'05, Luk—Oh—Shlapentokh-Rothman '22]:
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The new result

Recall that mass inflation generically holds if [Dafermos—Rodnianski
'05, Luk—Oh—Shlapentokh-Rothman '22]:

/ v8(9%¢p)? dv < oo for some k > 2.
H

Theorem (G. ’24)
All solutions satisfy

10K0) |3 Se vkt for 0 < k < 4.

Corollary

Mass inflation holds for generic solutions.
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Price’s law

Price’s law
At late times, linear waves on subextremal black hole spacetimes
behave like ¢t 3.

[Price '72; Dafermos-Rodnianski '05; Tataru '13; Donninger-Schlag-Soffer '12;
Metcalfe-Tataru-Tohaneanu '12; Angelopoulos-Aretakis-Gajic '18, '21; Hintz

'20; and many others...]
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Price’s law in a nonlinear and spherically symmetric setting

Theorem (Luk—Oh 19, Luk—-Oh 24, G. '24)

There are constants Cx # 0, a functional £[y|, and a small
0 > 0, such that

10k — Cellelv 3|l Sv 3% for0 < k < 2.

The quantity £[p] is non-zero for generic solutions.
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An application

Theorem (Van de Moortel '25)

There exist (two-ended and spherically symmetric) asymptotically
flat black holes whose interior contains both a spacelike and a
null singularity.
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An outline of the proof




The region of spacetime under consideration

Figure 4: We work in the late-time region Rchar-
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The foliation of the exterior region

Figure 5: We foliate the exterior region (at late-times) by bifurcate null

hypersurfaces ¥,.
16



The scaling vector field

e On Minkowski, Sy, = ud, + v, satisfies [m, Sm] = 20m
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Key ingredients of the proof

e Redshift effect on a subextremal black hole
[Dafermos—Rodnianski '05]

e Energy decay (and pointwise decay) from rP-weighted energy
estimates [Dafermos—Rodnianski '09]

e Reductive structure in the error terms arising from

commutation

e Hierarchy of weak and strong decay estimates for the

geometry

18



Reductive structure in the errors arising from commutation

We use three vector field commutators, U, V, and S.

e Energy estimate for ¢ closes on its own
e Energy estimate for Uy sees errors involving ¢
e Energy estimate for V¢ sees errors involving ¢ and Uyp

e Energy estimate for S sees errors involving ¢, Uyp, and Vo
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Reductive structure in the errors arising from commutation

We use three vector field commutators, U, V, and S.

e Energy estimate for ¢ closes on its own

e Energy estimate for Uy sees errors involving ¢

e Energy estimate for V¢ sees errors involving ¢ and Uyp

e Energy estimate for S sees errors involving ¢, Uyp, and Vo

Takeaway
Order the commutators U < V < S|
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Hierarchy in the estimates for the geometry

e After commuting with I, derive (strong) decay for I'g.
e Commuting with S requires (weak) boundedness of Sg!

o Write |Sg| < u|Ug| + v|Vg| and use decay for Ug and Vg.

20



The gauge

The ingoing coordinate u is normalized at null infinity:
(—8,_,[‘)‘1 = 1l,
The outgoing coordinate v is normalized on a curve of constant r:

avr|{r:rH} =1.
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The three vector field commutators

e 0= (u,v) (used globally)
e 0= (u,r) (used near T)
e 0= (v,r) (used near H)
U= L 9, V= (N9, + (1 — (r)o
= (—8[,!’) us = Xr<RrR\I)9, Xr<R ry

S = x<r(r)vo, + (1 - erR(r))(ugu + r0,).

22



Reductive structure: the details

1 _
U= mauv V = XrgR(f)Qv + (1 - XrgR(r))ara

S = xr<r(r)vo, + (1 - X,gR(r))(ugu + r0,).

Ewlr)+ [ [ 7400 S EWl(m)+ [ [ wouBue (w>0)

The global redshift vector field U
OUp = —kdOUp + O(r=2)0¢, where k > 0
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Reductive structure: the details
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EplVel(72) + S Ep[Vel(m),  (p=3e).
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